Detecting DDoS Attacks Against Web Server via Lightweight TCM-KNN Algorithm

نویسندگان

  • Yang Li
  • Li Guo
  • Bin-Xing Fang
  • Zhi-Hong Tian
  • Yong-Zheng Zhang
چکیده

In this poster, we firstly put forward to an effective anomaly detection method based on TCM-KNN (Transductive Confidence Machines for K-Nearest Neighbors) algorithm to fulfill DDoS attacks detection task towards ensuring the QoS of web server. The method is good at detecting network anomalies with high detection rate, high confidence and low false positives than traditional methods, because it combines “strangeness” with “p-values” measures to evaluate the network traffic compared to the conventional ad-hoc thresholds based detection and particular definition based detection. Secondly, we utilize the new objective measurement as the input feature spaces of TCM-KNN, to effectively detect DDoS attack against web server. Finally, we introduce Genetic Algorithm (GA) based instance selection method to boost the real-time detection performance of TCM-KNN and thus make it be an effective and lightweight mechanism for DDoS detection for web servers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Shield Algorithm (DSA) for Security against Phishing Attacks

The World Wide Web provides every internet citizen with voluminous and heterogeneous data. Therefore, it becomes an essential to mine this available data to make it presentable, useful, and pertinent to a particular problem. Web mining deals with the extraction of these interesting patterns and developing useful abstracts from diversified sources. To improve the security of Web services one wou...

متن کامل

HF-Blocker: Detection of Distributed Denial of Service Attacks Based On Botnets

Abstract—Today, botnets have become a serious threat to enterprise networks. By creation of network of bots, they launch several attacks, distributed denial of service attacks (DDoS) on networks is a sample of such attacks. Such attacks with the occupation of system resources, have proven to be an effective method of denying network services. Botnets that launch HTTP packet flood attacks agains...

متن کامل

Detecting Distributed Denial of Service (DDoS) Attacks through Inductive Learning

As the complexity of Internet is scaled up, it is likely for the Internet resources to be exposed to Distributed Denial of Service (DDoS) flooding attacks on TCP-based Web servers. There has been a lot of related work which focuses on analyzing the pattern of the DDoS attacks to protect users from them. However, none of these studies takes all the flags within TCP header into account, nor do th...

متن کامل

Defending HTTP Web Servers against DDoS Attacks through Busy Period-based Attack Flow Detection

We propose a new Distributed Denial of Service (DDoS) defense mechanism that protects http web servers from application-level DDoS attacks based on the two methodologies: whitelist-based admission control and busy period-based attack flow detection. The attack flow detection mechanism detects attach flows based on the symptom or stress at the server, since it is getting more difficult to identi...

متن کامل

Probabilistic Packet Filtering Model to Protect Web Server from DDoS Attacks

We present a probabilistic packet filtering (PPF) mechanism to defend the Web server against Distributed Denial-of-Service (DDoS) attacks. To distinguish abnormal traffics from normal ones, we use Traffic Rate Analysis (TRA). If the TRA mechanism detects DDoS attacks, the proposed model probabilistically filters the packets related to the attacks. The simulation results demonstrate that it is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008